Бета клетки при сахарном диабете

Бета клетки при сахарном диабете thumbnail

Ещё одна надежда затеплилась для диабетиков 1 типа. Ученые обнаружили, что большая часть инсулин-продуцирующих клеток не погибает, а просто находится в состоянии покоя. Ранее ученые считали, что сахарный диабет 1 типа развивается после потери/гибели 90 процентов инсулинопродуцирующих клеток. Но новое исследование показывает, что это справедливо только для маленьких детей. При диагнозе диабета от шести лет и старше, присутствует все еще достаточно много клеток, но они просто перестают функционировать. Исследователи из Университета Эксетера (University of Exeter Medical School) считают, что в последствии возможно пробудить неактивные клетки и излечить болезнь.

«Это невероятно захватывающее исследование и оно может открыть двери для новых методов лечения молодых людей, у которых развивается сахарный диабет», говорит профессор Ноэль Морган Медицинская школа Университета Эксетера (Professor Noel Morgan University of Exeter Medical School) «Ранее считалось, что подростки с диабетом 1-го типа теряют около 90 процентов своих бета-клеток, но исследовав их поджелудочные железы, мы обнаружили, что это не так. На самом деле, те кому установили диагноз в подростковом возрасте все еще имеют множество бета-клетки — это говорит о том, что клетки находятся в состоянии покоя. Если мы сможем найти способ реактивировать эти клетки так, чтобы они возобновили выделение инсулина, мы сможем замедлить или даже повернуть вспять прогрессирование этой ужасной болезни «.

Британская команда работала с учеными из Университета Осло, проанализировав почти 400 образцов поджелудочной железы от людей с сахарным диабетом 1 типа. Образцы дали первые доказательства, что дети, которым был поставлен диагноз диабета типа 1 в возрасте шести лет или младше подверглись более агрессивной форме заболевания. Состояние, известное, как инсулит, представляющий воспалительный процесс, убило ПОЧТИ все инсулин-продуцирующие бета-клетки в поджелудочной железе маленьких детей. Но само прогрессирование заболевания не радикально отличается от развития заболевания у старших подростков, которые сохранили неожиданно большое число бета-клеток. На момент постановки диагноза сохраняется до 50% бета-клеток, хотя они и потеряли свою функциональность.Теперь, когда ученые знают, что инсулин продуцирующие клетки не погибают, а становятся неактивными, они могут начать искать способы активировать их функциональность.

Ранее в этом году учёные MIT и Гарвардского университета доказали, что возможно излечение диабета 1 типа в течение шести месяцев у животных при переливании миллионов продуцирующих инсулин клеток. Новое исследование означает что учёные и врачи ближе, чем когда-либо для того чтобы отказаться от ежедневных инъекции инсулина.

Соавтор исследования Д-р Сара Ричардсон из Медицинской школы Университета Эксетера /Dr Sarah Richardson, of the University of Exeter Medical School/: «Для того чтобы достичь эффективности исследования, мы должны понять основные причины заболевания. Наш следующий шаг выяснить, почему диабет прогрессирует по-разному у детей младшего и страшего возраста, с целью понять, как мы могли бы более эффективно лечить обе группы.»

ИСТОЧНИК 1, ИСТОЧНИК 2

——————————————————————————————————————————————

На правах автора блога: Так уж случилось, что ещё в 2014 году, практически сутками «копая» архивы научных исследований я несколько раз сталкивался с исследованиями разных лет, доказывающими выживаемость бета-клеток при диабете 1 типа. Даже у людей имеющий стаж несколько десятков лет. Это было и наше исследование от 1996 года, и ряд зарубежных. Не нужно прилагать особых усилий чтобы найти их на просторах интернета. Но самое удивительное для меня заключалось в том, что спор об этом у меня несколько раз возникал именно с практикующими эндокринолгами. И слава Богу, мне удавалось обратить их внимание на эти исследования. Да, они делают своё дело «здесь и сейчас» и большой им за это поклон. Ну я буду стараться, чтобы об этом знало как можно больше людей. Потому, что «бета-клетки не погибают», даже у маленьких детей. И при определённых условиях они могут самовосстановится. Всё будет хорошо, я узнавал:).
——————————————————————————————————————————————

Источник

Ученые из США разрабатывают синтетические бета-клетки поджелудочной железы, которые в ближайшем будущем помогут справиться с сахарным диабетом.

На страницах журнала Nature Chemical Biology сотрудники Университета Северной Каролины в Чапел-Хилл и их коллеги из Университета штата Северная Каролина в Роли сообщили о создании искусственного аналога инсулинпродуцирующего аппарата поджелудочной железы.

Искусственные клетки способны тонко регулировать уровень глюкозы в крови, выбрасывая требуемое количество инсулина в ответ на гипергликемию.

Руководитель проекта профессор биомедицинского инжиниринга Жень Гу и его сотрудники надеются, что в один прекрасный день синтетические бета-клетки можно будет использовать в форме неинвазивного и безопасного пластыря для лечения сахарного диабета.

Американские ученые обнаружили, что единственная инъекция синтетических бета-клеток позволяет контролировать сахар в крови у диабетических мышей в течение 5 дней!

Напомним, сахарный диабет – это метаболическое заболевание, которое развивается при нарушении продукции или функций гормона инсулина.

Из-за недостаточной выработки инсулина или снижения чувствительности клеток к нему (инсулинрезистентность) молекулы глюкозы не в состоянии проникать внутрь клеток. Таким образом, клетки лишаются энергии, а концентрация глюкозы (сахара) в крови аномально возрастает.

Инсулин продуцируется специализированными клетками поджелудочной железы – так называемыми бета-клетками. Продукция инсулина зависит от концентрации глюкозы в крови и представляет собой тонко настроенный механизм обратной связи.

При сахарном диабете I типа проблема заключается в гибели инсулинпродуцирующих клеток, поэтому его еще называют инсулинозависимой формой заболевания. При сахарном диабете II типа в основе болезни лежит инсулинрезистентность – снижение чувствительности клеток к инсулину. Последняя форма наиболее распространена и тесно связана с ожирением.

Потребность в неинвазивной доставке инсулина

В Соединенных Штатах сахарным диабетом страдает около 30 миллионов человек, причем 6 миллионов вынуждены прибегать к инъекциям инсулина или инсулиновым помпам.

На протяжении многих лет предпринимались попытки создания такой формы лечения сахарного диабета, при которой больные могли бы отказаться от уколов. Но пищеварительная система быстро разрушает крупную молекулу инсулина, поэтому «инсулин в таблетках» так и остался недостижимой мечтой фармакологов и диабетиков.

Некоторые случаи диабета можно лечить трансплантированными клетками поджелудочной железы. Однако эти методы лечения являются дорогостоящими, нуждаются в иммуносупрессорах, сопряжены с многочисленными послеоперационными рисками и зависят от донорских клеток поджелудочной железы, которых даже в США собирают слишком мало.

Несмотря на удивительные возможности трансплантации бета-клеток, эффект хирургического лечения диабета недолговечен: пересаженные клетки погибнут в любом случае, поэтому через несколько лет потребуется новая пересадка.

Авторы последнего исследования поясняют: биоинженеры неоднократно пытались «воссоздать ключевые функции» бета-клеток поджелудочной железы в терапевтических целях. Они приводят примеры, такие как наночастицы с медленным высвобождением лекарственного вещества на основе клеточных мембран и микрогелей.

Синтетические бета-клетки станут умнее

Общая проблема старого подхода к имитации бета-клеток заключалась в «односекционной» структуре и их «относительно пассивном» взаимодействии с организмом человека.

Некоторые пытались создать многокомпонентные структуры по доставке инсулина, но до сегодняшнего дня никому не удалось имитировать функции бета-клеток более высокого порядка. Иными словами, разработать автономную, саморегулирующуюся систему с обратной связью.

Открытие профессора Гу венчает 10-летнюю работу над проблемой. В результате получилась синтетическая бета-клетка, тонко имитирующая ключевые процессы инсулинпродуцирующего аппарата поджелудочной железы.

Синтетическая бета-клетка имеет простую клеточную стенку с двойной липидной мембраной, внутри которой содержатся микровезикулы («пузырьки») с инсулином. Кроме структуры «везикул в везикуле» ученые разработали систему метаболизма и мембранного синтеза инсулина, обеспечивающие автономность и саморегуляцию клеток.

Диабетические мыши не нуждались в инсулине

Когда система метаболизма глюкозы «ощущает» повышение сахара в крови, она инициирует изменение внутри микровезикул. Пузырьки начинают сливаться с клеточной мембраной и выделяют необходимое количество инсулина.

«Насколько нам известно, эта синтетическая система является первой в своем роде, способной ощущать уровень глюкозы и секретировать инсулин посредством везикулярного слияния. Мы уже протестировали систему на мышах с отсутствующими бета-клетками, и были вполне удовлетворены результатами», — говорит профессор Гу.

После введения синтетических бета-клеток уровень сахара у диабетических мышей приходил в норму в течение часа, и оставался в допустимых пределах 5 дней после инъекции.

В настоящее время ведутся дополнительные испытания, которые позволят использовать искусственный инсулинпродуцирующий аппарат в кожных пластырях.

Перспективы технологии просто умопомрачительные: больному достаточно наклеить пластырь, чтобы на несколько дней забыть о приеме таблеток и инъекциях инсулина!

И на этом ученые не останавливаются, намереваясь сделать фармакологический эффект еще более длительным, а терапию более удобной для пациентов.

Можно сказать одно: наши потомки будут видеть инсулиновые помпы только в музее.

Константин Моканов: магистр фармации и профессиональный медицинский переводчик

Источник

Сурен Закиян, Сергей Медведев
«Наука из первых рук» №1(61), 2015

Об авторах

Сурен Минасович Закиян («Наука из первых рук» №1(73), 2017)

Сурен Минасович Закиян — доктор биологических наук, профессор, заведующий лабораторией эпигенетики развития Института цитологиии генетики СО РАН, заведующий лабораторией молекулярной и клеточной медицины Новосибирского научно-исследовательского института патологии кровообращения им. академика Е. Н. Мешалкина, заведующий лабораторией стволовой клетки Института химической биологии и фундаментальной медицины СО РАН. Автор и соавтор 215 научных работ, 5 патентов и 3 монографий.

Сергей Петрович Медведев («Наука из первых рук» №1(73), 2017)

Сергей Петрович Медведев — кандидат биологических наук, старший научный сотрудник Института цитологии и генетики СО РАН и Института химической биологии и фундаментальной медицины СО РАН (Новосибирск), ведущий научный сотрудник Новосибирского научно-исследовательского института патологии кровообращения им. академика Е. Н. Мешалкина. Автор и соавтор 14 научных работ.

В работах, попавших в 2014 г. в прорывы по версии журнала Science, ученым удалось значительно продвинуться в разработке альтернативной терапии сахарного диабета 1-го типа, суть которой состоит в трансплантации больным так называемых бета-клеток поджелудочной железы, вырабатывающих гормон инсулин. До сих пор такие клетки получали из тканей эмбрионов или брали у доноров посмертно. Однако их использование сталкивалось с рядом проблем, от тканевой несовместимости до этических. Выход, предложенный учеными, заключается в пересадке больным зрелых бета-клеток, полученных в лабораторных условиях из стволовых недифференцированных клеток самого пациента либо обычных соматических клеток путем их «перепрограммирования». Для широкого применения этой технологии требуется решить проблему защиты трансплантата, поскольку диабет 1-го типа — это аутоиммунное заболевание, и новые бета-клетки будут также подвергаться атакам иммунной системы.

Сахарный диабет — самое распространенное эндо­кринное заболевание в мире: по данным Международной федерации диабета сегодня им страдает более 300 млн человек. Болезнь не обошла и семью Дугласа Мелтона, руководителя одной из исследовательских групп, занимающихся разработкой клеточной терапии диабета. Их работы вошли в список наиболее выдающихся научных достижений 2014 г. по версии журнала Science.

Сахарный диабет — болезнь, характеризующаяся стойким увеличением в крови концентрации глюкозы, — сегодня входит в тройку самых распространенных видов заболеваний. При диабете 2-го типа бета-клетки островков Лангерганса в поджелудочной железе вырабатывают пептидный гормон инсулин, который регулирует уровень глюкозы в крови, но ткани организма теряют чувствительность к нему. Этот наиболее распространенный (до 80–90% случаев) тип сахарного диабета, который называют еще инсулинонезависимым, развивается преимущественно в пожилом возрасте и характеризуется относительно легким течением.

При диабете 1-го типа наблюдается аутоиммунное поражение бета-клеток поджелудочной железы, вырабатывающих гормон инсулин. Такой тип диабета приводит к полной пожизненной зависимости от инъекций инсулина — на данный момент это практически един­ственный способ терапии этого тяжелого заболевания. Больной должен постоянно следить за уровнем глюкозы в крови и в зависимости от «скачков» уровня глюкозы самостоятельно корректировать дозы инсулина. При этом в любом случае у больного развиваются осложнения: дисфункция почек и сердечно-сосудистой системы, поражение глаз (диабетиче­ская ретинопатия), некротическое поражение тканей. Результатом является существенное снижение качества жизни больных, а зачастую инвалидность и ранняя смерть.

Говоря об альтернативной возможности терапии сахарного диабета, надо упомянуть о существовании достаточно успешной практики пересадки донорских бета-клеток. Их получают из тканей эмбрионального происхождения или берут у доноров посмертно. После такой трансплантации больной на несколько лет становится независимым от инъекций инсулина. Проблемы такого вида терапии связаны с качеством и количеством донорского материала, не говоря уже о тканевой несовместимости реципиента и донора. Ведь после пересадки больные вынуждены принимать препараты, подавляющие активность иммунной системы, к тому же через какое-то время все равно происходит отторжение трансплантата. Еще одно препят­ствие — проблемы этического характера, связанные с использованием тканей эмбрионов.

Выход из ситуации в принципе есть: бета-клетки поджелудочной железы можно получать in vitro (в лабораторных условиях) из клеточных культур. Их источником могут быть плюрипотентные стволовые клетки человека, т. е. «первичные» недифференцированные клетки, из которых происходят все клетки наших органов и тканей. Для получения бета-клеток можно использовать как стволовые клетки эмбрионов, так и индуцированные плюрипотентные стволовые клетки, которые получают из обычных соматических клеток взрослого человека путем их «перепрограммирования».

Один из возможных вариантов клеточной терапии диабета – трансплантация биосовместимой капсулы («Наука из первых рук» №1(61), 2016)

Технологии получения индуцированных плюрипотентных стволовых клеток известны и достаточно хорошо разработаны. Но вот получить из них зрелые бета-клетки гораздо сложнее, так как для этого необходимо буквально в чашке Петри воспроизвести сложнейшие процессы, происходящие во время эмбрионального развития человека, используя сигнальные молекулы и химические соединения, направляющие развитие клеток в нужную сторону.

В список выдающихся научных исследований прошлого года, опубликованный журналом Science, как раз и вошли работы двух исследовательских групп: из Гарвардского института стволовых клеток (США) и Медицинской школы Массачусетского университета в Вустере (США) под руководством Д. Мелтона и из Университета провинции Британская Колумбия (Канада) и компании BetaLogics (США) под руководством Т. Кифера, посвященные технологиям получения in vitro бета-клеток поджелудочной железы (Pagliuca et al., 2014; Rezania et al., 2014). Взяв в качестве исходного материала стволовые клетки человеческого эмбриона, в итоге ученые получили клетки, проявляющие все основные качества бета-клеток. То есть в них «работали» определенные гены и присутствовали специфические белки, так что эти клетки были способны продуцировать инсулин в ответ на присутствие глюкозы. Пересаженные лабораторным мышам из чистой линии, служащей экспериментальной моделью сахарного диабета, эти клетки нормально функционировали и компенсировали первоначальное отсутствие инсулина!

Фотография сделана спустя две недели после имплантации в почечную капсулу лабораторной мыши бета-клеток («Наука из первых рук» №1(61), 2016)

Огромное преимущество этого метода в том, что с его помощью можно получать функционирующие бета-клетки в довольно большом количестве. В финале процесса из одного флакона для культивирования объе­мом 0,5 л можно получить до 300 млн клеток — этого числа вполне достаточно, чтобы компенсировать недостающий инсулин у одного человека весом около 70 кг. Или для проведения скрининга среди 30 тыс. отдельных химических соединений — потенциальных лекарственных веществ, если использовать клетки не по «прямому назначению», а для фармакологических исследований.

Безусловно, описанные технологии нуждаются в совершенствовании. В частности, необходима разработка детальных протоколов получения бета-клеток из индуцированных плюрипотентных стволовых клеток. Это позволит не только в любой период жизни пациента и практически из любых клеток его собственного организма при необходимости получить необходимое количество бета-клеток, но и разрешит проблему иммунологической несовместимости донора и реципиента.

Однако остается другая проблема: поскольку диабет 1-го типа — это аутоиммунное заболевание, то новые бета-клетки будут опять атакованы иммунной системой, как когда-то свои «родные» клетки пациента. Поэтому пересаженные клетки надо научиться защищать! Только в этом случае подобное лечение может стать доступным и широко применимым, ведь использование иммунодепрессантов оправдано только в самых тяжелых случаях.

Сейчас разрабатываются разные варианты подобной защиты. Например, можно покрыть клетки специальным гидрогелем, однако в этом случае их будет гораздо труднее удалить из организма при необходимости. К тому же пока не существует способа воспрепятствовать их инкапсуляции (заключению в соединительнотканную оболочку) подобно другим чужеродным телам в организме, что перекроет пересаженным клеткам приток питательных веществ. Сейчас идет поиск химических веществ, пригодных для изготовления гидрогеля, который не будет вызывать такого эффекта.

Другое решение предложили конкуренты команды Мелтона — американская компания ViaCyte. Суть его в том, чтобы поместить пул незрелых бета-клеток внутрь тела в биологически совместимой оболочке: предполагается, что предшественники бета-клеток будут там постепенно созревать и успешно функционировать. Такое устройство уже создано; более того, в компании уже запустили первый этап клинических испытаний. Но хотя результаты аналогичных исследований на животных выглядят многообещающе, есть опасения относительно эффективности этого способа.

В любом случае, уже сейчас имеющиеся технологии внушают надежду, что проблема лечения сахарного диабета будет в скором времени решена. Использование бета-клеток, произведенных из стволовых клеток пациентов, даже при условии постоянного приема иммунодепрессантов может стать огромным облегчением для больных тяжелыми формами диабета, которые постоянно сталкиваются с опасными для жизни изменениями уровня сахара в крови.

Литература:
1. Pagliuca F. W., Melton D. A. How to make a functional β cell // Development. 2013. V. 140. № 12. P. 2472–2483. DOI: 10.1242/dev.093187.
2. Pagliuca F. W., Millman J. R., Gürtler M. et al. Generation of functional human pancreatic β cells in vitro // Cell. 2014. V. 159. № 2. P. 428–439. DOI: 10.1016/j.cell.2014.09.040.

3. Rezania A., Bruin J. E., Arora P. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells // Nat. Biotechnol. 2014. V. 32. № 11. P. 1121–1133. DOI: 10.1038/nbt.3033.
4. Ledford H. Stem-cell success poses immunity challenge for diabetes // Nature. 2014. V. 514. № 7522. P. 281. DOI: 10.1038/514281a.

Источник