Нанотехнологии в лечении сахарного диабета 1 типа

Нанотехнологии в лечении сахарного диабета 1 типа thumbnail

ПОМОГУТ ЛИ НАНОТЕХНОЛОГИИ ПОБЕДИТЬ ДИАБЕТ?

Однако безудержный прогресс науки даёт основания с оптимизмом прогнозировать дальнейшие существенные достижения и в сфере медицины, в том числе, в области диабетологии. Наиболее реальными среди них для решения проблем сахарного диабета являются новые нанотехнологии, использование стволовых клеток и биогенной инженерии.

Nanos — значит «гном»…

Началом современного этапа нанотехнологии принято считать выступление известного американского учёного Ричарда Фейнмана с несколько необычным по названию докладом: «Там внизу много места» («There’s Plenty of Room at the Bottom»), сделанным в 1959 году в Калифорнийском технологическом институте. Идея доклада заключалась в обосновании возможности механического перемещения атомов и молекул с помощью устройств сопоставимых (приближенных к ним) миниатюрных размеров.

Лингвистической основой термина «нанотехнология» стала приставка «нано» (от греческого nanos — карлик, гном). Эта приставка используется в международной системе единиц СИ в качестве множителя, равного 109 (одна миллиардная часть метра, миллионная часть миллиметра, нанометр-нм). О размерах микроучастка такой длины можно судить по тому, что на нём размещаются примерно 10-12 атомов. Соответственно под наноматериалами понимают материалы молекулярных (околомолекулярных) размеров.

Как ни удивительно, но нанотехнологии, не зная научных основ этих процессов, использовали ещё в древнем мире. Это были смеси сажи с водой для изготовления чернил, жидкость с кислородным соединением железа для изготовления красок, некоторые косметические и моющие средства (в мыльном растворе образуются наночастицы-мицеллы)… Как выявлено современными исследованиями, применявшиеся древними греками и аборигенами Австралии краски для волос и нанесения боевых раскрасок, обладавшие стойким и длительным окрашивающим эффектом, содержали наночастицы.

Хотя разработка и широкое внедрение целого спектра нанотехнологий — дело более отдалённого будущего, уже в настоящее время их применение позволило создать различные сверхпрочные материалы, оригинальные и эффективные лекарства, сконструировать предшественники нанокомпьютеров, нанороботов и другие микроустройства и материалы.

С нанотехнологиями связывают надежды и на существенное увеличение умственных возможностей человека. Устройство нанометрических размеров (8000-10000 микрон) способно хранить в своей памяти информацию, эквивалентную фонду одной из крупнейших библиотек мира — библиотеки Конгресса США. Предполагается, что имплантация подобного устройства в мозг человека позволит во много раз увеличить объем информации, способной храниться в человеческой памяти. Вот что могут творить крохотные гномы!

Что нас ждёт в медицине

Безусловно, сегодня одной из важнейших и перспективных сфер применения нанотехнологий является медицина.

Иногда задают вопрос: нужны ли вообще медицине нанотехнологии? Положительный ответ на этот вопрос однозначен — очень нужны! И, прежде всего, потому, что они позволяют осуществлять диагностические и лечебные мероприятия на клеточном и макромолекулярном уровне, а не путем «неприцельного» воздействия на весь организм, как это происходит сейчас в большинстве случаев.

Ведь не секрет, что традиционные формы лечебных мероприятий в большинстве случаев — за редкими исключениями — можно сравнить со стрельбой из пушек по воробьям. И это при том, что основные, в том числе патологические, биохимические и другие процессы в организме, происходят даже не на локальном органном или тканевом уровне, а на уровне отдельных клеток, молекул и атомов. А они-то и имеют наноразмеры. Вот, например, размеры некоторых медицинских объектов: ширина ДНК — 2,5 нм, вируса — 100 нм, бактерии — 1000 нм, молекулы лекарства (аспирин) — 1 нм.

В качестве основных выделяют несколько областей применения нанотехнологий в медицине. В их числе — целевая доставка лекарственных веществ, дистанционная диагностика и лечение на нанометровом уровне, медицинская имплантация. К настоящему времени сформировался обширный перечень заболеваний, в лечении которых в той или иной форме успешно применяются нанотехнологии. В этот перечень входят онкологические, кардиологические, эндокринологические, гастроэнтерологические, бронхо-легочные и другие заболевания. Подсчитано, что уже к 2010 году с применением нанотехнологий было создано около 150 инновационных лекарств и способов их инкорпорирования в организм биологического объекта.

От наноробота до нанопинцета

Наибольшие ожидания связаны с созданием многофункциональных медицинских нанороботов, обладающих химической инертностью и способных перемещаться внутри кровяных капилляров.

Типичный (базовый) медицинский наноробот, предназначенный для проникновения в кровеносное русло, сконструирован из наночастиц размерами в пределах от 1 до 100 нм, а размеры всего наноробота не превысят 3000 нм (минимальный размер кровяных капилляров). Прообразом такого наноробота является искусственный эритроцит (он назван «респирацитом»), созданный Р.Фрайтасом. Он представляет собой сферический наноробот размером 1 микрон. Внутри респирацита содержатся молекулы кислорода и углекислого газа под высоким (1000 атмосфер) давлением.

Дублируя функции природных эритроцитов, респирациты обладают намного большей эффективностью, так как благодяря высокому давлению могут содержать кислород в несколько сот раз больше, чем природные эритроциты. Иньекция 5 мл 50%-го раствора респирацитов сможет обеспечить кислородоснабжающую функцию более 5 литров крови. Подумать только —введение в кровь респирацитов позволит человеку обходиться без внешнего кислорода от 15 минут до 4 часов!

Нанотехнологии позволят модифицировать лекарственные препараты с целью устранения их аллергенных и аутоиммунных свойств, защиты от разрушения пищеварительными ферментами. Благодаря специально сконструированным нанотехнологиям можно будет отказаться от традиционной химиотерапии и облучения при онкологических заболеваниях, обладающих многочисленными отрицательными побочными действиями.

В США, например, созданы наногильзы — носители противораковых антител, имеющие диаметр в 20 раз меньший, чем у эритроцитов. После введения их в кровеносное русло под влиянием инфракрасного излучения происходит преобразование в тепловую энергию, локально разрушающую раковые клетки, не затрагивая соседние здоровые. Опробование этой технологии на подопытных мышах с раковыми опухолями подтвердило эффективность метода (в течение 10 дней произошло разрушение раковых зон, при последующем наблюдении новые очаги не появлялись).

Имеются сообщения об успешном применении наноразмерных разветвлённых полимеров для лечения глазных травм и заболеваний, в частности, для восстановления функций разорваного глазного тракта.

Один из возможных вариантов доставки лекарственных средств в нужное место организма — это использование миниатюрных капсул с нанопорами (предполагается, например, что таким путём можно будет решить и проблему физиологически регулируемого выделения инсулина).

Проведённые в США исследования показали возможность излечения экспериментиального инфаркта у мышей и кроликов с помощью нанотехнологий. Такое излечение было достигнуто путём введения препарата на основе веществ, способных к самоорганизации в длинные и тонкие нановолокна, которые и заполняют рану в сердечной мышце.

Наноматериалы можно будет использовать также в качестве заменителя других (больных или дефектных) тканей.

Известно, что в организме человека существует более 50 типов биоминералов наноразмерного формата. Прошёл клиническую апробацию материал «Синтекость», созданный в Институте геохимии и минералогии АН Украины для применения в качестве имплантанта для замещения костной ткани. Наночастицы будут способствовать безопасности и надёжности генной терапии. Их можно будет использовать для транспортировки генов (белков) в нужное место, не «привлекая внимания» клеток иммунной системы и предотвращая тем самым её отторгающую защитную реакцию.

С использованием нанотехнологий в медицине тесно связано и создание различных устройств, предназначенных для манипуляций с наночастицами, молекулами и отдельными атомами, а также наноинструментов. Примерами здесь могут служить сканирующие зондовые микроскопы, нанотрубки, нанопинцеты…

Применение нанотехнологий открывает широкие возможности для создания микролабораторий (laboratory on a chip, то есть лаборатория на чипе), которые позволят качественно и количественно определять различные вещества, в том числе глюкозу, антитела и др.

Революция в диабете?

Внедрение нанобиотехнологий открывает заманчивые перспективы и в сфере лечения сахарного диабета.

Среди приоритетных задач в этой сфере можно назвать две. В первую очередь — это существенное усовершенствование методик подсадки бета-клеток поджелудочной железы, а в более отдалённой перспективе (видимо, в сочетании с методами биогенной инженерии и использованием стволовых клеток) — стимуляция создания новых, нормально функционирующих бета-клеток. Вторая важная задача — поиск и внедрение неиньекционных способов введения экзогенного инсулина, гарантированно обеспечивающих поступление в организм и усвоение им требуемых доз инсулина.

Один из вариантов подсадки работоспособных бета-клеток поджелудочной железы (пока гипотетитический, ибо нужные наноустройства пока не созданы) предусматривает использовать с этой целью нанокапсулы, содержащие данные клетки. Предполагается, что устройство имплантированных в тело человека нанокапсул таково, что выработка и выброс инсулина в кровь будут осуществляться автоматически, в зависимости от уровня глюкозы. Вероятно, такая методика позволит решить и проблему обеспечения стабильной точности дозировки инсулина. Разумеется, в решении такой задачи не обойтись без специальных нанороботов с бортовыми компьютерными устройствами.

В литературе имеются сообщения о создании нанороботов (с химическими датчиками и передающим устройством) для круглосуточного контроля содержания глюкозы в крови. Его основными компонентами являются источник питания, химический датчик и передатчик. Такие устройства позволят отказаться от обременительного (нередко многократного, 5-6 раз в день) прокола кожи и анализа крови, усложняющего жизнь больных. Предполагается, что вывод информации, предупреждающей о гипо- и гипергликемических состояниях, можно будет осуществлять на мобильный телефон.

Другими вариантом непрерывного контроля уровня глюкозы крови с помощью нанотехнологий является использование для татуировки специальных красок (чернил) из пористых наночастиц размером 100-120 нм, которые меняют свой цвет в зависимости от концентрации глюкозы в межклеточной жидкости, содержащей такое же количество глюкозы, как и кровь. Однако в экспериментальных исследованиях пока не решена серьёзная проблема, препятствующая использовать такой метод, — это длительность времени реакции до проявления видимого и чёткого изменения окраски.

Привлекают внимание исследования австралийских, израильских и американских учёных, направленные на то, чтобы создать пластыри, капсулы, миниатюрные шарики и другие устройства с нетоксичными кремниевыми наноигламии, которые позволят лекарству проникать через кожу либо стенки кишечника, не травмируя их.

Задача — упреждать!

С нанотехнологиями тесно связаны и основные надежды в сфере генной терапии сахарного диабета, при которой необходимые нормальные гены первоначально вводятся в экскорпоральный клеточный материал, а затем генетически обогащённые клетки вводятся в организм больного, где будут приживаться и работать в нужном физиологическом режиме.

Первое десятилетие ХХI века показывает, что мы делаем ощутимые шаги на пути перехода от оборонительной медицины к медицине наступательной, упреждающей. Важная роль в этом процессе принадлежит инновационным технологиям, которые могут приблизить человечество к осуществлению давней мечты — эффективно излечивать диабет, а в идеале — вообще избавить мир от этого тяжкого заболевания.

Профессор Илья Никберг — специально для «ДН»

Сидней, Австралия

Оригинал статьи можно найти на Официальном сайте газеты ДиаНовости

Источник

НОВОСТИ. Эндокринная система

Нанотерапия улучшит лечение сахарного диабета 1 типа

Нанотерапия улучшит лечение сахарного диабета 1 типа

Научно-исследовательское сотрудничество между институтом Висс и Гарвардским университетом позволило разработать «умную» инъекционную нанотерапию, который может быть запрограммирована на передачу препаратов клеткам поджелудочной железы.

Хотя нанотехнологии обычно проходят многочисленные этапы разработки и тестирования до клинического применения, но они потенциально могут улучшить лечение сахарного диабета 1 типа за счет увеличения терапевтической эффективности и снижения побочных эффектов.

Новый подход повысил эффективность препарата в 200 раз, что показали опыты в пробирке. Он основан на способности этих наноматериалов защищать препарат от распада и сконцентрировать его на ключевых участках — инсулин-продуцирующих клетках. Резкое увеличение эффективности также означает снижение доз необходимых препаратов, что, разумеется, снизит частоту и силу побочных эффектов.

Диабет 1 типа — заболевание, при котором иммунная система организма разрушает клетки поджелудочной железы, производящие инсулин. Развития сахарного диабета 1 типа может привести к серьезным осложнениям здоровья, таким как почечная недостаточность и слепота.

Использование наночастиц, которые могут быть запрограммированы для доставки лекарственной терапии или стволовых клеток к определенным областям тела, является отличной альтернативой системного лечения, поскольку позволяет снизить терапевтические дозы и, следовательно, сократить побочные эффекты.

Нанотехнологии в лечении сахарного диабета 1 типа18.01.2012 Нанотехнологии в лечении сахарного диабета 1 типа2648 Показ

Источник. ScienceDaily

Администрация сайта med-practic.com не несет ответственности за содержание информации

Вопросы, ответы, комментарии

Читайте также

Аэробные нагрузки по-разному влияют на людей

Аэробные нагрузки по-разному влияют на людей

Диабетический центр Джослин показал: если у человека повышен уровень сахара в крови, преимущества аэробных нагрузок будут менее выражены, чем обычно, передает «Ридус». Речь идет о случаях хронической…

Нанотехнологии в лечении сахарного диабета 1 типа22.07.2020 Нанотехнологии в лечении сахарного диабета 1 типа144 Показ

Особые стельки снижают риск развития диабетической стопы

Особые стельки снижают риск развития диабетической стопы

Ученые из Университета Стаффордшира создали уникальные стельки для людей с диабетом. По их словам, новые стельки, напечатанные на трехмерном принтере, могут значительно улучшить состояние ног у диабетиков…

Нанотехнологии в лечении сахарного диабета 1 типа30.06.2020 Нанотехнологии в лечении сахарного диабета 1 типа337 Показ

Ученые прописали диабетикам антиоксидантную диету

Ученые прописали диабетикам антиоксидантную диету

Антиоксиданты — природные соединения, которые помогают справиться с окислительным стрессом, вызванным свободными радикалами (побочный продукт метаболизма). Как отмечает Foods News, свободные радикалы…

Нанотехнологии в лечении сахарного диабета 1 типа26.06.2020 Нанотехнологии в лечении сахарного диабета 1 типа253 Показ

Открытие: предсказать диабет реально с первых лет жизни

Открытие: предсказать диабет реально с первых лет жизни

То, что у человека разовьется диабет 2-го типа, можно сказать еще в детстве, заявляют ученые из Бристольского университета. Как отмечает «ТАСС», предлагается анализировать показатели метаболизма у ребенка. Было проведено исследование…

Нанотехнологии в лечении сахарного диабета 1 типа24.06.2020 Нанотехнологии в лечении сахарного диабета 1 типа138 Показ

Контактные линзы научат определять диабет

Контактные линзы научат определять диабет

Возможно, в ближайшем будущем функционал контактных линз заметно расширится. Так группа ученых разработала линзы, которые будут проверять уровень сахара в крови и доставлять лекарства непосредственно в глаза…

Нанотехнологии в лечении сахарного диабета 1 типа20.05.2020 Нанотехнологии в лечении сахарного диабета 1 типа244 Показ

Источник

Ññûëêà íà íîâîñòü: https://www.mk.ru/science/article/2013/07/03/878571-novaya-vaktsina-zastavlyaet-organizm-diabetikov-vyirabatyivat-insulin-samostoyatelno.html

Ñîáñòâåííî ñàìà íîâîñòü.

Øïðèöû â óéäóò â ïðîøëîå — íîâàÿ ÄÍÊ-âàêöèíà áûëà óñïåøíî èñïûòàíà íà ÷åëîâåêå

Áëàãîäàðÿ ðàçðàáîòêå íîâîãî ìåòîäà ëå÷åíèÿ ëþäè, êîòîðûå ñòðàäàþò îò ñàõàðíîãî äèàáåòà ïåðâîãî òèïà, â ñêîðîì âðåìåíè ñìîãóò çàáûòü î øïðèöàõ è ïîñòîÿííûõ èíúåêöèÿõ èíñóëèíà.  íàñòîÿùåå âðåìÿ äîêòîð Ëîóðåíñ Øòåéíìàí èç Ñòýíôîðäñêîãî óíèâåðñèòåòà ñîîáùèë, ÷òî íîâûé ìåòîä ëå÷åíèÿ ñàõàðíîãî äèàáåòà ïåðâîãî òèïà áûë óñïåøíî èñïûòàí íà ÷åëîâåêå è ìîæåò íàéòè øèðîêîå ïðèìåíåíèå ïðè ëå÷åíèè äàííîé áîëåçíè â îáîçðèìîì áóäóùåì.

äèàáåò äèàáåò ïåðâîãî òèïà èíñóëèí ëîóðåíñ øòåéíìàí âàêöèíà lawrence steinman íåâðîëîãèÿ
Ëîóðåíñ Øòåéíìàí (Lawrence Steinman), M.D./Stanford University
Òàê íàçûâàåìàÿ «ðåâåðñèðîâàííàÿ âàêöèíà» ðàáîòàåò ïóòåì ïîäàâëåíèÿ èììóííîé ñèñòåìû íà óðîâíå ÄÍÊ, ÷òî â ñâîþ î÷åðåäü ñòèìóëèðóåò ïðîèçâîäñòâî èíñóëèíà. Ðàçðàáîòêà Ñòýíôîðäñêîãî óíèâåðñèòåòà ìîæåò ñòàòü ïåðâîé ÄÍÊ-âàêöèíîé â ìèðå, êîòîðóþ ìîæíî áóäåò ïðèìåíÿòü äëÿ ëå÷åíèÿ ëþäåé.

«Äàííàÿ âàêöèíà èñïîëüçóåò ñîâåðøåííî äðóãîé ïîäõîä. Îíà áëîêèðóåò ñïåöèôè÷åñêèé îòâåò èììóííîé ñèñòåìû, à íå ñîçäàåò ñïåöèôè÷åñêèå èììóííûå ðåàêöèè, êàê îáû÷íûå âàêöèíû ïðîòèâ ãðèïïà èëè ïîëèîìèåëèòà», — ãîâîðèò Ëîóðåíñ Øòåéíìàí.

Âàêöèíà áûëà ïðîòåñòèðîâàíà íà ãðóïïå èç 80 äîáðîâîëüöåâ. Èññëåäîâàíèÿ ïðîâîäèëèñü íà ïðîòÿæåíèè äâóõ ëåò è ïîêàçàëè, ÷òî ó ïàöèåíòîâ, êîòîðûå ïîëó÷èëè ëå÷åíèå ïî íîâîé ìåòîäèêå, íàáëþäàëîñü ñíèæåíèå àêòèâíîñòè êëåòîê, ðàçðóøàþùèõ èíñóëèí â èììóííîé ñèñòåìå. Ïðè ýòîì íèêàêèõ ïîáî÷íûõ ïîñëåäñòâèé ïîñëå ïðèåìà âàêöèíû çàôèêñèðîâàíî íå áûëî.

Êàê ÿñíî èç íàçâàíèÿ, òåðàïåâòè÷åñêàÿ âàêöèíà ïðåäíàçíà÷åíà íå äëÿ ïðîôèëàêòèêè áîëåçíè, à äëÿ ëå÷åíèÿ óæå èìåþùåãîñÿ çàáîëåâàíèÿ.

Ó÷åíûå, îïðåäåëèâ êàêèå èìåííî ðàçíîâèäíîñòè ëåéêîöèòîâ, ãëàâíûõ «âîèíîâ» èììóííîé ñèñòåìû, àòàêóþò ïîäæåëóäî÷íîþ æåëåçó, ñîçäàëè ïðåïàðàò, êîòîðûé ñíèæàåò â êðîâè êîëè÷åñòâî èìåííî ýòèõ êëåòîê, íå âëèÿÿ íà îñòàëüíûå êîìïîíåíòû èììóíèòåòà.

Ó÷àñòíèêè èñïûòàíèé îäèí ðàç â íåäåëþ íà ïðîòÿæåíèè 3-õ ìåñÿöåâ ïîëó÷àëè èíúåêöèè íîâîé âàêöèíû. Ïàðàëëåëüíî èì ïðîäîëæàëè ââîäèòü èíñóëèí.

 êîíòðîëüíîé ãðóïïå áîëüíûå íà ôîíå èíúåêöèé èíñóëèíà ïîëó÷àëè âìåñòî âàêöèíû ïðåïàðàò ïëàöåáî.

Ñîçäàòåëè âàêöèíû ñîîáùàþò, ÷òî â ýêñïåðèìåíòàëüíîé ãðóïïå, ïîëó÷àâøåé íîâûé ïðåïàðàò, íàáëþäàëîñü çíà÷èòåëüíîå óëó÷øåíèå ðàáîòû áåòà-êëåòîê, êîòîðûå ïîñòåïåííî âîññòàíàâëèâàëè ñïîñîáíîñòü âûðàáàòûâàòü èíñóëèí.

«Ìû áëèçêè ê âîïëîùåíèþ â æèçíü ìå÷òû ëþáîãî âðà÷à-èììóíîëîãà: ìû íàó÷èëèñü âûáîðî÷íî «âûêëþ÷àòü» äåôåêòíûé êîìïîíåíò èììóííîé ñèñòåìû, íå âëèÿÿ íà åå ðàáîòó â öåëîì», – êîììåíòèðóåò îäèí èç ñîàâòîðîâ ýòîãî îòêðûòèÿ ïðîôåññîð Ëîóðåíñ Øòåéíìýí (Lawrence Steinman).

Äèàáåò 1-ãî òèïà ñ÷èòàåòñÿ áîëåå òÿæåëûì çàáîëåâàíèåì, ÷åì åãî «ñîáðàò» äèàáåò 2-ãî òèïà.

Ñàìî ñëîâî äèàáåò — ïðîèçâîäíîå ãðå÷åñêîãî ñëîâà «äèàáàéíî», ÷òî çíà÷èò «ïðîõîæó ÷åðåç ÷òî-íèáóäü, ñêâîçü», «ïðîòåêàþ». Àíòè÷íûé âðà÷ Àðåòåóñ Êàïïàäîêèéñêèé (30…90 ã. í. ý.) íàáëþäàë ó ïàöèåíòîâ ïîëèóðèþ, êîòîðóþ ñâÿçûâàë ñ òåì, ÷òî æèäêîñòè, ïîñòóïàþùèå â îðãàíèçì, ïðîòåêàþò ÷åðåç íåãî è âûäåëÿþòñÿ â íåèçìåí¸ííîì âèäå.  1600 ã. í. ý. ê ñëîâó äèàáåò äîáàâèëè mellitus (îò ëàò. mel — ì¸ä) äëÿ îáîçíà÷åíèÿ äèàáåòà ñî ñëàäêèì âêóñîì ìî÷è — ñàõàðíîãî äèàáåòà.

Ñèíäðîì íåñàõàðíîãî äèàáåòà áûë èçâåñòåí åù¸ â ãëóáîêîé äðåâíîñòè, íî äî XVII âåêà ðàçëè÷èé ìåæäó ñàõàðíûì è íåñàõàðíûì äèàáåòîì íå çíàëè.  XIX — íà÷àëå XX âåêà ïîÿâèëèñü îáñòîÿòåëüíûå ðàáîòû ïî íåñàõàðíîìó äèàáåòó, óñòàíîâëåíà ñâÿçü ñèíäðîìà ñ ïàòîëîãèåé öåíòðàëüíîé íåðâíîé ñèñòåìû è çàäíåé äîëè ãèïîôèçà.  êëèíè÷åñêèõ îïèñàíèÿõ ïîä òåðìèíîì «äèàáåò» ÷àùå ïîäðàçóìåâàþò æàæäó è ìî÷åèçíóðåíèå (ñàõàðíûé è íåñàõàðíûé äèàáåò), îäíàêî, åñòü è «ïðîõîæó ñêâîçü» — ôîñôàò-äèàáåò, ïî÷å÷íûé äèàáåò (îáóñëîâëåííûé íèçêèì ïîðîãîì äëÿ ãëþêîçû, íå ñîïðîâîæäàåòñÿ ìî÷åèçíóðåíèåì) è òàê äàëåå.

Íåïîñðåäñòâåííî ñàõàðíûé äèàáåò ïåðâîãî òèïà — çàáîëåâàíèå, îñíîâíûì äèàãíîñòè÷åñêèì ïðèçíàêîì êîòîðîãî ÿâëÿåòñÿ õðîíè÷åñêàÿ ãèïåðãëèêåìèÿ — ïîâûøåííûé óðîâåíü ñàõàðà â êðîâè, ïîëèóðèÿ, êàê ñëåäñòâèå ýòîãî — æàæäà; ïîòåðÿ âåñà; ÷ðåçìåðíûé àïïåòèò, ëèáî îòñóòñòâèå òàêîâîãî; ïëîõîå ñàìî÷óâñòâèå. Ñàõàðíûé äèàáåò âîçíèêàåò ïðè ðàçëè÷íûõ çàáîëåâàíèÿõ, âåäóùèõ ê ñíèæåíèþ ñèíòåçà è ñåêðåöèè èíñóëèíà. Ðîëü íàñëåäñòâåííîãî ôàêòîðà èññëåäóåòñÿ.

Äèàáåò 1 òèïà ìîæåò ðàçâèòüñÿ â ëþáîì âîçðàñòå, îäíàêî íàèáîëåå ÷àñòî çàáîëåâàþò ëèöà ìîëîäîãî âîçðàñòà (äåòè, ïîäðîñòêè, âçðîñëûå ëþäè ìîëîæå 30 ëåò).  îñíîâå ïàòîãåíåòè÷åñêîãî ìåõàíèçìà ðàçâèòèÿ äèàáåòà 1 òèïà ëåæèò íåäîñòàòî÷íîñòü âûðàáîòêè èíñóëèíà ýíäîêðèííûìè êëåòêàìè (-êëåòêè îñòðîâêîâ Ëàíãåðãàíñà ïîäæåëóäî÷íîé æåëåçû), âûçâàííîå èõ ðàçðóøåíèåì ïîä âëèÿíèåì òåõ èëè èíûõ ïàòîãåííûõ ôàêòîðîâ (âèðóñíàÿ èíôåêöèÿ, ñòðåññ, àóòîèììóííûå çàáîëåâàíèÿ è äðóãèå).

Äèàáåò 1 òèïà ñîñòàâëÿåò 10—15% âñåõ ñëó÷àåâ äèàáåòà, ÷àùå ðàçâèâàåòñÿ â äåòñêîì èëè ïîäðîñòêîâîì ïåðèîäå. Îñíîâíûì ìåòîäîì ëå÷åíèÿ ÿâëÿþòñÿ èíúåêöèè èíñóëèíà, íîðìàëèçóþùèå îáìåí âåùåñòâ ïàöèåíòà.  îòñóòñòâèå ëå÷åíèÿ äèàáåò 1 òèïà áûñòðî ïðîãðåññèðóåò è ïðèâîäèò ê âîçíèêíîâåíèþ òÿæ¸ëûõ îñëîæíåíèé, òàêèõ êàê êåòîàöèäîç è äèàáåòè÷åñêàÿ êîìà, çàêàí÷èâàþùèåñÿ ñìåðòüþ áîëüíîãî.

à òåïåðü êðàòêîå äîáàâëåíèå. ß ñàì áîëåþ äèàáåòîì 16 ëåò. äëÿ ìåíÿ â æèçíè ýòî ïðèíåñëî ìíîãî ïðîáëåì, õîòÿ áûëà â ýòîì è ïîëüçà. Áåç ýòîé áîëåçíè ÿ áû íå ñòàë òåì, êòî ÿ åñòü. ÿ áû íå íàó÷èëñÿ òàêîìó ñàìîêîíòðîëþ, íå ïîâçðîñëåë áû ðàíüøå ñâåðñòíèêîâ… äà ìíîãî ÷åãî. Íîÿ ìîëþñü, ÷òîáû ôàðìàöåâòû, êîòîðûå äåëàþò íà ýòîé áåäå îãðîìíûå ñîñòîÿíèÿ íå çàãóáèëè ýòî äåëî. âñåì áîëüíûì æåëàþ äîæèòü äî ÷óäåñíîãî ìîìåíòà, êîãäà ýòà áîëåçíü îòñòóïèò. âñåì ïå÷åíåê ðåáÿò))

Источник